Novel Lightweight Magnets for Space Applications, Phase II

Completed Technology Project (2009 - 2012)

Project Introduction

The Tai-Yang Research Company (TYRC) of Tallahassee, Florida, will design, build and test a superconducting magnet system optimized for low current space based applications. Adiabatic demagnetization refrigeration (ADR) for milli-Kelvin sensor cooling is enabled by the use of superconducting magnets to eliminate ohmic heating. Present systems use low temperature superconductors and require significant cooling system power to operate the magnets. TYRC's proposed superconducting magnet will operate at higher temperature and lower current than systems presently available, and will therefore reduce the total system burden. In Phase I, TYRC successfully demonstrated a method for producing a high temperature superconductor optimized for the low currents (< 10 amps) required for space based magnets. In Phase II, TYRC will produce several small test coils from the optimized conductor to develop the manufacturing technology. TYRC will design a demonstration magnet with input from NASA personnel to address mission requirements. TYRC will then manufacture and test the demonstration magnet to validate the design. At the conclusion of the project, TYRC will be positioned to supply low current superconducting magnets optimized for space based ADR systems identified for NASA missions.

Anticipated Benefits

Potential NASA Commercial Applications: Low current high temperature superconducting magnets find application where weight savings and system power requirements are important. One such application is for magneto-optical imaging systems for studying low temperature material properties. TYRC has already produced a conceptual design for such a system using its novel, proprietary superconductor technology. The proposed coil technology is directly applicable to these systems, and may be introduced to this market during Phase II. NASA has licensed its ADR cooling system technology to a supplier interested in supplying such systems to research laboratories. TYRC's proposed coil technology may be used in these systems. Low current superconducting leads with higher temperature thermal intercepts may be of interest to cryogenic systems integrators seeking new methods of reducing heat leaks. TYRC's novel, proprietary conductor technology, now available, is directly applicable.

Novel Lightweight Magnets for Space Applications, Phase II

Table of Contents

Project Introduction	1	
Anticipated Benefits	1	
Primary U.S. Work Locations		
and Key Partners	2	
Organizational Responsibility	2	
Project Management	2	
Project Transitions		
Technology Maturity (TRL)	3	
Technology Areas	3	

Novel Lightweight Magnets for Space Applications, Phase II

Completed Technology Project (2009 - 2012)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland
• Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California
Energy to Power	Supporting	Industry	Tallahassee,
Solutions	Organization		Florida
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama
Tai-Yang Research	Supporting	Industry	Knoxville,
Corporation	Organization		Tennessee

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Project Manager:

Gary C Jahns

Principal Investigator:

Trever Carnes

Small Business Innovation Research/Small Business Tech Transfer

Novel Lightweight Magnets for Space Applications, Phase II

Completed Technology Project (2009 - 2012)

Primary U.S. Work Locations			
Alabama	California		
Florida	Maryland		
Tennessee			

Project Transitions

0

February 2009: Project Start

September 2012: Closed out

Closeout Summary: Novel Lightweight Magnets for Space Applications, Phase I I Project Image

Technology Maturity (TRL) Start: 4 Current: 4 Estimated End: 4

5

Development

7 8

Demo & Test

Technology Areas

Primary:

2 3

Applied

Research

- TX14 Thermal Management Systems
 - ☐ TX14.1 Cryogenic Systems
 ☐ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments, and High Efficiency
 Electric Motors

